研究速報

太陽電	電池モジュールを用	いた反射	波制御の基礎的検討
畠山	和徳 [†] (学生員)	高橋	応明 ^{†a)} (正員)
宇野	亨†(正員)	黒川	浩助†

Fundamental Study on Electromagnetic Reflection Control by Using the Solar Cell Module

Kazunori HATAKEYAMA[†], Student Member, Masaharu TAKAHASHI^{†a)}, Toru UNO[†], Regular Members, and Kosuke KUROKAWA[†], Nonmember

† 東京農工大学工学部 , 小金井市

Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, 184–8588 Japan a) E-mail: omei@cc.tuat.ac.jp

あらまし 本論文では,建築物壁面に設置されつつ ある太陽電池モジュールの太陽電池セル間配線形状を 変化させて電磁波障害を低減させる方法について検 討している.配線間隔や形状のパラメータを適当に 選ぶことにより,通常のモジュールに比べて反射波を 20 [dB] 以上低減できることを示した.

キーワード EMC, FDTD, 地上波ディジタル放送, ゴースト現象, 太陽電池

1. まえがき

近年クリーンエネルギーへの関心が高まり,一般家 庭だけでなく,ビルなどの高層建造物の壁面にも太陽 電池が取り付けられるようになってきている.一方, 建造物の高層化とともに,その壁面で生じる反射電磁 波による電磁波障害が問題となっている.具体的には, テレビ放送局から直接届いた電波と建造物の壁面から 反射した時間遅れの波が受信されることにより,映像 が2重,3重に見えるゴースト現象として現れる.特 にビルなどの高層建造物付近の住宅などで発生する割 合が大きい.太陽電池モジュールはおおむね金属板と 考えられるため,電磁波障害がいっそう深刻になる. 今後は地上波ディジタル放送に移行していき,信号処 理によりある程度ゴースト現象を緩和することが可能 であるが,近くで強い反射が発生する場合や遠方から の大きく遅延した反射波が到来するような環境では信 号処理だけでゴースト現象を緩和させるのは困難であ ると予想される.したがって,太陽電池が取り付けら れた高層建造物による電磁波障害の対策が必要とな る.太陽電池モジュールを斜め上に傾けることによっ て反射波を上空に向けようとする方法もあるが,設置 スペースや美観の点で問題である.

そこで本論文では,太陽電池モジュールの高周波特 性を変化させることにより反射波を所望の方向に向け ることを考えている.この方法の一つとして,本論文 では太陽電池モジュールを構成している太陽電池セル アレー間のインピーダンスを変化させ,反射指向性を 制御する方法に着目した[1]~[4].セルアレー間のイ ンピーダンスの変化は,太陽電池セル間を結んでいる 直流電力収集用配線の形状を変えることによって行う 方法をとっている.本手法の有効性はFDTD法[5]に よる解析によって確認する.また本解析では,太陽電 池セルは周期構造であるとしている[6],[7].

2. 太陽電池のモデル化

2.1 解析手法

本節では太陽電池の構造と FDTD 法によるモデル化 の具体的なパラメータを示す.図1(a) に代表的な単配 線太陽電池アレーの構造とその寸法を示す.太陽電池は セルを固定するための充てん材である EVA:Ethylene vinyl acetate ($\varepsilon_r = 3.3$)の中に半導体セルが置かれた 構造となっており,モジュールを構成する際のカバー 素材としてガラス ($\varepsilon_r = 3.9$)が使われている.太陽電

図 1 単配線太陽電池モジュールの構造と FDTD セルの 配置

電子情報通信学会論文誌 B Vol. J86-B No.9 pp. 2025-2028 2003 年 9 月

Fig. 1 Geometry and FDTD cell grid for single wiring solar cell module.

表 1 解析に用いたパラメータ Table 1 Parameters for analysis.

Δt	6.5e-13 [sec]
Δx	11.8 [mm]
Δy	11.8 [mm]
Δz	11.8 [mm]
$\Delta y cell$	$2.36[\mathrm{mm}]$
$\Delta z cell$	$2.36[\mathrm{mm}]$
$\Delta xeva$	$0.2[\mathrm{mm}]$
$\Delta x g lass$	$2 [\mathrm{mm}]$
PML 層	16

池セルの間隔は,その設置形態によって様々なものが ある.一般家屋等の屋上設置用には発電量を向上させ るためにできるだけ密にする傾向にあるが,ビルの壁 面に設置する場合は,採光やデザイン面が重視され間 隔は広めにとられる.本論文は後者を対象にしている ことから,その代表的な値である 37.76 [mm] を採用 した.

解析において,太陽電池モジュールは図1(a)のように横1列に配列したアレーが縦方向にも一様に配列 されているとして無限平面アレーを構成しているもの とした.この太陽電池モジュールに地上波ディジタル 放送の周波数帯である700 MHzの水平偏波の平面波 を垂直に入射させ,その際に生じる定在波を観測する ことにより,位相及び反射係数特性を求めた.なお, 位相については相対位相の基準として図1(a)の単配 線モデルを用いている.

このように周期構造のモデルを考えるためには, 図 1 (b) に示すように完全電気壁及び完全磁気壁をお けばよいことになる.このときの解析に用いた FDTD 法の各パラメータを表 1 に示す. Δt はステップ時間, Δx , Δy , Δz は解析空間のセルサイズ, $\Delta xeva$ は EVA, $\Delta xglass$ はガラス, $\Delta ycell$, $\Delta zcell$ は太陽電 池セルを設定する際の不均-メッシュ[8] に用いたセル サイズである.また入射波の進行方向と垂直に PML 吸収境界条件を用いている.配線の太さは 2.36 [mm] とし, EVA に挟み込まれた半導体セルの厚みは非常 に薄いため考慮していない.

さて,太陽電池は一般に太陽光が入射する日中と光 が入射しない夜間とでその特性が異なる.しかし,太 陽電池セル端子間のインピーダンスは図2に示すよ うに高周波帯においてはどちらの場合もほとんど0Ω になることから[9],本解析においては完全導体として 扱った.

2.2 平行配線モデル

太陽電池セル間の配線には,図1(a)のように1本

bright states [9].

w=0~94.4[mm]

図 3 平行配線モデル Fig.3 Parallel wiring model.

の配線で電圧を取り出すもののほかに,効率良く電圧 を取り出す目的で図3に示すように2本の配線を用 いるものも少なくない.本論文ではこれを平行配線モ デルと呼ぶ.平行配線の間隔wをセルの中心からそ れぞれw/2ずらしたときの反射係数を図4に示す. w = 50 mm程度までは位相の変化は小さいが,それ 以上の間隔にすると,相対位相の変化が大きいことが わかる.このことから配線間隔が位相の変化に大きく 寄与していることがわかる.なお,反射係数の大きさ は,w = 60 mm付近でピークを示すものの,およそ 0.6程度で配線間隔にはさほど依存しない.

2.3 片側配線折り曲げモデル

上で述べたように,太陽電池間の配線を2本にする ことによって相対位相を変化させることができたが, これだけでは反射波の方向を変えることができない. そこで図 5 に示すように,平行配線の片側の配線を 折り曲げることによって上下の位相差を変化させるこ とを考えた.配線間隔 w,折り曲げ位置を一定とし, 縦方向の折り曲げ長 l を変化させたときの反射係数を 図 6 に示す.位相は $l = 20 \sim 25 \,\mathrm{mm}$ の範囲で 180° 近く変化している.また反射係数は $l = 20 \,\mathrm{mm}$ でほ ぼ0 となり反射がほとんど生じない.

3. 太陽電池モジュール構成

本章では,前述までに得られた単体の特性を利用し

図 4 配線間隔変化法による特性 Fig. 4 Reflection coefficient of parallel wiring model as a function of the spacing w.

図 5 片側配線折り曲げモデル Fig.5 Single side bended wiring model.

て,反射電磁波を制御する太陽電池モジュールを構成 する方法とその特性を示す.ビルなどで反射したテレ ビ放送波によって電磁波障害が生じるのは,ケーブル テレビを導入していない2,3階建て程度までの一般 家屋がほとんどであると考えられる.そのため障害を 発生させないようにするには,反射波の向きが上方向 に向くように,進み位相の太陽電池セルを下部に,位 相遅れのセルを上部に配置すればよい.そのようにし た例を図7に示す.

太陽電池モジュールの垂直面内指向性は次式によっ て与えられる[10].

図 6 片側配線折り曲げ法による特性

Fig. 6 Reflection coefficient of a single side bended wiring model.

図 7 太陽電池アレー構成 Fig. 7 An example of solar cell array.

$$f(\theta) = \sum_{m=1}^{N} E_m \exp[j\{\delta_m + k_0 d(m-1)\cos\theta\}] (m = 1, 2, 3, \cdots)$$
(1)

ここで δ_m は前節で求めた反射波の相対位相であり, N は垂直方向に配置した太陽電池セルの数, d は垂直 方向のセル間隔である.また E_m は太陽電池セルの素 子パターンである.

	l [mm]	w [mm]	R_m	$\delta_m [\text{degrees}]$
#1	24.2	23.6	0.08	0
#2	22.3	23.6	0.05	-60
#3	21.6	23.6	0.03	-120
#4	20.0	23.6	0.05	-180

表 2 アレーに用いた太陽電池セルの寸法

Table 2 The size of the solar cell used for the array.

図 8 アレー指向性 ($\phi = 0$) Fig. 8 Array directivity. ($\phi = 0$)

さて,一般に使われている太陽電池モジュールは, 太陽電池セル4列で一つのモジュールを構成をするこ とが多い.そこで,アレー素子は位相差が一番大きく, 反射が小さい片側配線折り曲げモデルとし,表2の ような寸法とした.このときの指向性を図8に示す. ただし,#1は最下段に配置する太陽電池セルであり, セル間の間隔は d = 130 mm とした.また,式(1)に おける素子パターンは

$$E_m = R_m \sin \theta \qquad (m = 1, 2, 3, \cdots) \tag{2}$$

とダイポールの素子パターンとした [11], [12]. ここで R_m は各パラメータにおける反射係数の振幅である. 片側配線折り曲げモデルを用いたアレーについては 57°方向にピークが得られ,通常の太陽電池モジュー ルと比較して下方向の放射が抑制される.またその最 大値は 20 [dB] 以上改善が見られ小さくなっているこ とがわかる.

4. む す び

太陽電池セル間の配線間隔に応じて反射波の位相を 変えることができ,更に片側の配線を折り曲げること によって通常の太陽電池モジュールと比較して大きく 反射を低減させることができることがわかった.また, 4素子アレー構成の太陽電池モジュールにおいて具体 的にその効果を検証した結果,上方向にビームが向き, 下方向への放射が抑制され,通常の太陽電池モジュー ルと比較して20[dB] 以上反射を低減させることが可 能であることを示した.

本論文では太陽電池間の配線による効果だけを検討 したが,今後は別の可能性も含めて太陽電池モジュー ルによる電磁波障害対策法について検討していく予定 である.また電磁波が太陽電池に斜めに入射した場合 や,地上波ディジタル放送の周波数帯である470から 770 MHz における特性なども合わせて検討し,実験に よる確認を行う予定である.

献

文

- R.J. Dinger, "Reactively steered adaptive array using microstrip patch elements at 4 GHz," IEEE Trans. Antennas Propag., vol.AP-32, no.8, pp.848– 856, Aug. 1984.
- [2] J. Huang and R.J. Pogorzelski, "A Ka-band microstrip reflectarray with elements having variable rotation angles," IEEE Trans. Antennas Propag., vol.46, no.5, pp.650–656, May 1998.
- [3] J. Huang and A. Feria, "Inflatable microstrip reflectarray antennas at X and Ka-band frequencies," IEEE AP-S/URSI Symp., pp.1670–1673, July 1999.
- [4] 畠山和徳,高橋応明,宇野 亨,黒川浩助, "太陽電池モジュールを用いた反射波制御の基本的検討",信学技報, AP2002-143, Jan. 2003.
- [5] 宇野 亨, FDTD 法による電磁界およびアンテナ解析, コロナ社, 1998.
- [6] 佐藤 浩,堂前洋幸,高橋応明,安部 實,"コンクリート壁の表面形状による電磁波の反射,透過抑制",信学論
 (B),vol.J82-B,no.4,pp.674–682, April 1999.
- [7] 小林 豊,高橋応明,安部 實,"ガラス表面上金属導線の 配置による電磁波遮断",信学論(B),vol.J83-B,no.10, pp.1446-1452, Oct. 2000.
- [8] P. Monk and E. Suli, "Error estimates for Yee's method on nonuniform grides," IEEE Trans. Magn., vol.30, no.12, pp.3200–3203, Dec. 1994.
- [9] 桜井康弘,黒川浩助, "太陽光発電アレイ分布定数回路 シミュレーション"、太陽/風力エネルギー講演論文集, pp.307-310, Nov. 2000.
- [10] 本郷廣平,電波工学の基礎,実教出版,1983.
- [11] 安達三郎,佐藤太一,電波工学,森北出版,1998.
- [12] 新井宏之,新アンテナ工学,総合電子出版,1996.
 (平成 14 年 12 月 20 日受付,15 年 4 月 14 日再受付)