

VOL. J101-B NO. 7 JULY 2018

本PDFの扱いは、電子情報通信学会著作権規定に従うこと。 なお、本PDFは研究教育目的(非営利)に限り、著者が第三者に直接配布すること ができる。著者以外からの配布は禁じられている。

THE COMMUNICATIONS SOCIETY THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS

生体情報モニタリング用 5.2 GHz 帯布アンテナ

山中 大輔^{†a)} 高橋 応明^{††b)}

5.2 GHz Band Textile Antenna for Biological Information Monitoring

Daisuke YAMANAKA^{†a)} and Masaharu TAKAHASHI^{††b)}

あらまし 生体情報モニタリングシステムは患者の状態を逐次把握し,容態の急変等に対応するために不可欠 なシステムであるが,送信機と患者間のケーブルによる身体の動作制限や,送信機の装着により生じる不快感な どの問題がある.そこで,送信用布アンテナとして 5.2 GHz 帯布アンテナを用いることで装着時の患者のスト レス軽減と安定した通信を見込むことができる.本論文では,水平・垂直の両偏波に対応する 5.2 GHz 帯生体情 報モニタリング用布アンテナを提案するとともに,本アンテナが人体近傍に設置された場合や使用中に湾曲した 場合でも良好に動作することを確認した.また,実際に本アンテナを使用して無線 LAN 周波数を利用した受信 信号強度の測定を行うことで,本アンテナを用いた無線通信が可能であることを示した.

キーワード 布アンテナ,生体情報モニタリング,パッチアンテナ,FDTD法,直交二偏波,無線LAN

1. まえがき

近年,病院内で患者の生体情報を常時モニタリング する生体情報モニタリングシステムが用いられてい る[1]. これは,患者の状態を逐次把握し,容態の急変 等に対応するために不可欠なシステムである.しかし, 現在のシステムは送信機と患者間のケーブルによる身 体の動作制限や,送信機の装着により生じる不快感な どの問題がある.また,患者の姿勢や位置によっては 通信が途切れてしまうことも考えられるため,より安 定した通信が可能な生体情報モニタリングシステムが 求められている.

現在の生体情報モニタリングシステムに使用される 周波数は主に420~450 MHz 帯であり,周波数チャン ネルの干渉を避けるために病棟ごとの運用がなされて いる.この無線チャンネル管理者は臨床工学技士が担 当することが多いが,無線通信が専門ではないうえ, 医療機器全体の保守管理作業に追われ使用周波数の 切り替えなどの複雑な管理を行う余裕がない. 一般の 医療従事者でも管理が容易な無線 LAN を用いて通信 を行うことが解決策の一つとして考えられるが,病院 内へ持ち込まれた無線 LAN 搭載機器のアクセスポイ ントによる外来波を原因とする 2.4 GHz 帯院内無線 LAN への干渉の可能性が報告されている [2]. そこで, 同じく無線 LAN 周波数である 5.2 GHz 帯は無線通信 の専門家ではない医療従事者でも管理がしやすく,干 渉や混雑による通信品質の低下も少ない利点が挙げら れる [2]. また, 5.2 GHz 帯のアンテナは 2.4 GHz 帯 のアンテナより構造を小形化しやすいため,装着時の 患者のストレスや折り曲げ等によるアンテナへの影響 も軽減できると考えられる.

布アンテナは柔軟性に優れていることから人体近傍 での利用を想定した研究が多く報告されている[3]~ [6].病衣に取り付けた際にも柔軟な構造により違和感 を緩和でき,移動時に送信機を携帯する必要がない. 更に,水平・垂直の直交両偏波を放射する布アンテナ を病衣に複数配置することで患者の位置や姿勢が変化 しても安定した通信を見込むことができる[3].

しかし,これらは 2.4 GHz 帯やそれ以下の低い周 波数を対象としたものがほとんどである.2.4 GHz 帯 用布アンテナを調整し 5.2 GHz 帯に対応させた場合, 導電性布の繊維の編み方や損失,アンテナ自体の構造 により 2.4 GHz 帯と同様な動作をすることは保証で

[†] 千葉大学工学部, 千葉市 Faculty of Engineering, Chiba University, Chiba-shi, 263-8522 Japan

^{††} 千葉大学フロンティア医工学センター, 千葉市 Center for Frontier Medical Engineering, Chiba University, Chiba-shi, 263-8522 Japan

a) E-mail: 14t0844w@chiba-u.jp

b) E-mail: omei@faculty.chiba-u.jp DOI:10.14923/transcomj.2017JBP3057

きず,5.2 GHz 帯用の布アンテナとして新規に設計す る必要がある.簡易な1点給電構造であり,5 GHz 以 上の周波数を対象としたものであっても文献[7]~[9] では水平・垂直両偏波の利得が同程度となっておらず, 低コストで製造可能な単純な構造をもち,放射素子と 同平面の1点から給電を行い,水平偏波と垂直偏波の 両方に対応可能な5.2 GHz 帯用の布アンテナは報告 されていない.また,生体情報モニタリングシステム に関してもセンサー部について検討したものが多く, 5 GHz 帯を用いた布アンテナを送信アンテナとする検 討もされていない.

本論文では,主に電磁シールドなどに用いられる導 電性布 (Conductive cloth)を用いて,1点からの給電 によって斜め方向のだ円偏波を放射することで,水平 偏波と垂直偏波の両方に対応可能な生体情報モニタリ ング用布アンテナを提案するとともに,その特性を数 値解析と実験により検証した.動作周波数は無線LAN 周波数であり,2.4 GHz 帯と比べて混雑や外来波の干 渉が少ないと考えられ,比較的アンテナの小形化が容 易な 5.25 GHz とした.

本論文の構成を以下に述べる.2.「送信用布アンテ ナの検討」では、本アンテナの設計とその数値解析結 果について述べる.3.「アンテナ特性の実験評価」で は、実際に作製したアンテナを用いた実験による特性 評価と、導電性布による損失及びに通信実験について 述べる.4.「湾曲時のアンテナ特性」では、湾曲時を 想定した実験による特性評価について述べる.5.「む すび」では本論文のまとめを行う.

2. 送信用布アンテナの検討

2.1 送信用布アンテナの設計

送信アンテナは、病衣に直接取り付けて使用するこ とを想定しているため、小形で平面的な構造が望まし く、患者の姿勢や位置によらず安定した通信を行うた めに水平偏波と垂直偏波の2種類の直線偏波で同程度 の指向性利得が必要である.また、配線及び構造の簡 易化の観点から給電点を1点のみとし、アンテナによ る人体側への不要な放射も抑える必要性がある.以上 の条件を満たすアンテナの設計を行った.

まず,基本構造としてパッチアンテナを採用した. パッチアンテナは小形で平面状の構造をもち,アンテ ナ背部のグランド板によりバックローブの放射を抑制 しメインローブの利得を大きくすることが可能である. 図1に提案アンテナの概形を示す.柔軟性を保つた めに、大きさ 42×42 mm, 厚さ h = 1 mm, 比誘電率 $\varepsilon_r = 1.36$ のフェルト生地を誘電体として用い、グラン ド板として大きさ 42×42 mm の導電性布, 放射素子と して 23.5×23 mm の導電性布を用いて構成している.

本アンテナは、スリットの挿入によりインピーダン ス整合だけでなく、スリットの終端にて給電 MSL に 対して直交方向の電流経路が生じることが期待でき、 その二つの直交する電流の経路長を同程度とすること でだ円偏波を放射できる.

放射素子とグランド板の両方に導電性布(タニム ラ株式会社製,導電性布・電磁シールドクロス MK-KTN260)を用いた.この導電性布の表面抵抗率 (Surface resistivity): $R_s = 0.05 \Omega/\text{sq}$,角周波数 (Angular frequency): $\omega = 2\pi \times 5250 \times 10^6 \text{ rad/s}$,透磁率 (Permeability): $\mu_0 = 4\pi \times 10^{-7} \text{ として}$,式(1)を用 いて導電性布の導電率 (Conductivity): σ_e を算出し たところ [10], $\sigma_e = 8.29 \times 10^6 \text{ S/m}$ と求まった.今 回は,導電性布をこの導電率をもつ金属板と近似して 数値解析を行った.

$$R_s = \sqrt{\frac{\omega\mu}{2\sigma_e}} \tag{1}$$

本アンテナはパッチアンテナのグランド板側を人体 に向けて使用することを想定しているため、アンテナ 背面に給電構造を要する同軸背面給電は適さない. そ こで、放射素子と同平面から MSL (Micro strip line) を用いて給電する方式とした.また,放射素子に流れ る横方向と縦方向の電流の経路長によって共振周波数 と位相調整をしており,だ円偏波を放射できるように MSL の終端を放射素子の端点付近に設置した.光速 Co, 所望周波数 fo として式 (2) より求めた放射素子 幅 W と式 (3) より求めた実効誘電率 ε_{eff} を用いて 放射素子長 L を,式(4)[11]を用いて算出したとこ ろ, W = 26.31 mm, L = 23.54 mm となった. 給 電 MSL の接続と両偏波放射を考慮する必要性から, 幅 W: 23.5 mm × 長さ L: 23 mm とした. これは放 射素子幅が比帯域に影響し、放射素子長は共振周波数 に大きく影響するため、どちらの偏波から見ても同程 度の放射素子長が必要になるためである.

$$W = \frac{C_0}{2f_0\sqrt{\frac{\varepsilon_r + 1}{2}}}$$
(2)
$$\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left\{ \frac{1}{\sqrt{1 + 12\left(\frac{h}{W}\right)}} \right\}$$
(3)

585

表 1 FDTD 法における各条件 Table 1 Conditions of FDTD method.

Cell size	dx = dy = dz = 0.5 mm	
Number of iterations	30000	
Absorbing boundary conditions	PML 8 layers	
Input waveform	Gaussian pulse	

$$L = \frac{C_0}{2f_0\sqrt{\varepsilon}_{reff}} - 0.824 \left\{ \frac{(\varepsilon_{eff} + 0.3) \left(\frac{W}{h} + 0.264\right)}{(\varepsilon_{eff} - 0.258) \left(\frac{W}{h} + 0.8\right)} \right\}$$
(4)

まず,所望周波数 5.25 GHz にてインピーダンス整 合を取るために,図 1 に示すように給電 MSL の長 さ d_1 と放射素子に挿入する幅 1 mm のスリットの 長さ d_2 をパラメータとして,反射係数 (Reflection coefficient) 特性の数値解析を行った.なお,数値解 析は FDTD (Finite-Difference Time-Domain) 法を 用いて行い,インピーダンス整合の目安は所望周波数 5.25 GHz において反射係数が -10 dB 以下とした. 解析の際に設定した FDTD 法の各条件を表 1 に示す.

まず,スリット長 $d_2 \ge 0$ mm として,給電 MSL 長 $d_1 \ge 4$ mm から 7 mm まで 1 mm 刻みで変化さ せたときの反射係数を図 2 に示す.通常,パッチ端部 に接続する MSL 長は 1/4 波長程度のものがよく用い られるが,本アンテナは厚さが 1 mm と薄く,誘電体 も低誘電率のため, $\lambda/4$ 程度の MSL を給電に用いる と不要放射の増大が考えられる.そこで,MSL 長を $\lambda/4$ より短い 4~7 mm とし,スリットの挿入によっ てだ円偏波の放射と周波数整合の両立を図った.結果 を見ると, $d_1 = 6$ mm であるとき,最も整合の取れ る周波数が所望周波数 5.25 GHz となることが分かる. しかし,いずれの条件においても反射係数は最小でも

図 2 d_1 を変化させたときの反射係数 ($d_2 = 0$ mm) Fig. 2 Reflection coefficient when d_1 is changed.

Fig. 3 Reflection coefficient when d_2 is changed.

-12 dB 程度であり、人体装着時やアンテナが湾曲し た場合に -10 dB を上回ってしまうことも考えられる. そこで反射係数をより小さくするために、給電 MSL と放射板の間に前述のスリットを挿入した.このとき, 図3のように挿入したスリットの長さを調整しても各 方向偏波に寄与する電流経路長は変化しないため, 偏 波特性は大きく変動しない.そのときのスリット長 dg を 5 mm から 10 mm まで 1 mm 刻みで変化させたと きの反射係数を図3に示す. d2 が最大の10 mm であ るとき、スリットの挿入により最も整合の取れる周波 数が 20 MHz 程度高周波側へ移動したが、反射係数の 最小値が -20 dB となった. d2 を 10 mm より大き くした場合更に反射係数が減少することも考えられる が、給電 MSL と放射素子の接続構造部が細くなるこ とで使用時に断絶や故障が生じる可能性が高くなるお それがある.そのため、ここでは $d_2 = 10 \text{ mm}$ を最良 の条件とした.

2.2 提案アンテナの特性解析

前項のパラメータスタディの結果から設計した送信 用布アンテナを図4に示す.

図5に自由空間中における本アンテナの反射係数の 数値解析結果を示す.所望周波数5.25 GHz で反射係

数 -10 dB 以下を達成し,設計目標を十分満たして いる.図 6 に自由空間中における本アンテナの放射パ ターンの数値解析結果を示す. zx 面, yz 面において 垂直偏波,水平偏波の両偏波ともに放射素子方向であ る +z 方向へ強く放射されており,0 deg 方向の解析 値における最大利得は zx 面 $E_{\theta} = 4.5$ dBi, $E_{\varphi} = 6.1$ dBi となった.

また,人体方向である -z 方向には放射がグランド 板によって抑制されていることを確認した.この放射 による人体への影響についての詳細な評価については, 今後の課題とする.図7に正規化した電流分布の x 成 分(Jx)及び y 成分(Jy)を示す.放射素子表面にお いて垂直偏波と水平偏波にそれぞれ寄与する電流の存 在が確認できることから,垂直偏波と水平偏波が一つ の給電点により生じていることが分かる.

2.3 人体近傍でのアンテナ特性

本アンテナは人体近傍での使用を想定している.人 体は比誘電率が高く,近傍で使用するアンテナの特性 に影響を及ぼす可能性がある.そこで,簡易人体モデ ルを用いて人体近傍でのアンテナ特性について数値解 析を行った.簡易人体モデルは,計算時間の短縮のた めにアンテナに対して十分大きく,人体表面と同様と

図 6 放射パターン Fig. 6 Simulated radiation pattern of textile antenna in free space.

Fig. 7 Normalized Current distribution.

図 8 簡易人体モデル Fig. 8 Analyzed human model.

みなせる寸法の直方体とした.その解析モデルを図 8 に示す.所望周波数 5.25 GHz における人体モデルの 各電気定数は,筋肉を想定して比誘電率 $\varepsilon_r = 49.3$, 導電率 $\sigma = 4.3$ S/m とし,アンテナと簡易人体モデル の間は病衣の厚みを考慮して 1 mm の間隙を設けた. 図 9 に簡易人体モデル上における反射係数の数値解析 結果を示す.自由空間の解析結果と比較すると,反射 係数が 3 dB 程度増加しており,最も整合の取れる周 波数が 20 MHz 程度低周波側に移動して 5.25 GHz 付 近になっていることが分かる.また,簡易人体モデル 上にアンテナが設置された場合でも所望周波数 5.25 GHz において -10 dB を下回る結果が得られた.

図 10 に簡易人体モデル上における本アンテナの放

射パターンの数値解析結果を示す. 簡易人体モデル上 においても,放射素子方向である +z 方向へ zx 面及 び yz 面の垂直偏波,水平偏波の両偏波がともに強く 放射されている.また,0 deg 方向の解析値における 最大利得は zx 面 $E_{\theta} = 4.6$ dBi, $E_{\varphi} = 5.6$ dBi であ り, -z 方向は簡易人体モデルによってほぼ放射のな い結果が得られた.以上より,反射係数及び指向性利 得の著しい性能低下は認められず,人体近傍において 本アンテナは所望周波数で良好に動作すると判断した.

3. アンテナ特性の実験評価

3.1 自由空間上での実験評価

図 11 に自由空間上での反射係数の実測結果を示す. 実測値は解析値と比べ,反射係数が全体的に減衰し ていることが分かる.これは,導電性布を金属板と近 似して解析を行ったためだと考えられる.これについ ての詳細は 3.3「導電性布による損失」で述べる.実 測結果は所望周波数 5.25 GHz において -23.1 dB と なった.この結果より,本アンテナは所望周波数にお

いて良好に動作しているといえる.

図 12 に自由空間上での放射パターンの実測結果を 示す. 両偏波ともに解析値と実測値は良好に一致し ており, 0 deg 方向の実測値は zx 面 $E_{\theta} = 4.7$ dBi, $E_{\varphi} = 5.7$ dBi であった.

3.2 人体筋肉ファントム上での実験評価

表2に作製した人体筋肉ファントムの各電気定数の 目標値と9地点平均の実測値を示す.目標値からの誤 差は±5%以内であり,本ファントムを用いて人体近 傍でのアンテナ特性の評価を行った.作製したファン トムは,図8で示した人体モデルと同寸法とした.図 13にファントム上での反射係数の実測結果を示す.自 由空間上と同様に,実測値は解析値より減衰の大きい 結果となった.筋肉ファントム上にアンテナを設置し た場合でも,最も整合の取れる周波数は解析値と変わ らず 5.25 GHz であり,自由空間上の結果と比べ 0.8 dB 増加した -22.3 dB となったが,-10 dB を大き く下回っており本アンテナは人体上においても正常に 動作していると判断した.また,5.25 GHz において,

	Relative permittivity: ε_r	Conductivity: σ [S/m]
Target	49.3	4.3
Measured*	50.7 (+3%)	4.4 (+2%)
		*) 9 Points Average
	Sim. (on Phantom)	• Meas.
	5.2 GHz ban	đ
ta -5 -	5.2 GHZ ball	
-10 -10		
15	°°°°	-0 ⁰⁰⁰⁰
-15 10		00000 C
-20 -	⁰⁰ 000000	,00
Ja -25		

表 2 人体筋肉ファントムの各電気定数 Table 2 Electric constant of the phantom.

5 20

5.10

5.15

5 30

5 35

5 40

5 2 5

Frequency [GHz]

図 14 人体ファントム上での放射パターン Fig. 14 Measured radiation pattern of textile antenna on the phantom.

図 11 の自由空間上の結果と比べて、実測値と解析値 の減衰量が1dB程度異なるが、人体ファントムによ りアンテナ下部の電流分布が変わる影響と考えられる.

図 14 にファントム上での放射パターンの実測結果 を示す. 両偏波ともに解析値と実測値は良好に一致し ており、0 deg 方向の実測値は zx 面 $E_{\theta} = 5.5$ dBi, $E_{\varphi} = 5.5 \text{ dBi } \& x_{2} \land x_{2}$

3.3 導電性布による損失

本アンテナは放射素子とグランド板に金属板の代わ りに導電性布を用いて構成している.この導電性布と 金属による損失の有無を調べる為に、本アンテナの導 電性布で構成される箇所を金属板(銅板:Copper)に 置き換えて放射パターンを測定した.図15にその放 射パターン測定結果を示す. 導電性布は銅板と比較し

Fig. 15 Radiation pattern of Copper antenna.

て利得の低下は最大でも 2.5 dBi 程度となっている. また、 導電性布はグランド板として銅板と同程度に放 射を抑制できていることを確認した.今回用いた導電 性布は、ポリエステル繊維をニッケル-銅-ニッケルの 三層でコーティングされており、銅に比べてニッケル の導電率が低いこと、繊維状になっている構造からも 抵抗率が高くなることが利得低下の原因として考えら れる.

3.4 受信信号強度測定

本アンテナを用いた無線通信が可能であるか確認 するため、無線通信機が受信する強度である RSSI (Received Signal Strength Indication)の測定を行っ た. 通信可能である目安としては, RSSI が -70 dBm 以上とした. これは、無線 LAN 環境において一般的 に信号強度が十分良好であり、パケットを信頼できる 最低限の値である[12].本アンテナを無線 LAN 子機 のアンテナとして PC に接続し、送信アンテナにはダ イポールアンテナと市販の無線 LAN 親機のアクセス ポイント機能を用いて電波暗室内で測定を行った.測 定ソフトウェアには WifiInfoView [13] を用いた. 使 用したチャンネルは W52・48ch を用いた. 電波暗室 内でのこのチャンネルの中心周波数は 5.240 GHz で ある.測定時は親機を固定し, zx 面の測定では y 方 向, uz 面の測定では x 方向に布アンテナを 90 度回転 させ、ダイポールアンテナの偏波面を合わせて測定し た.送信アンテナと受信アンテナの高さを1mに固定 し、送受信アンテナ間の距離を1mから5mまで1 m 刻みに変化させたときの RSSI の測定結果を図 16 に示す. 直接波のみであっても、アンテナ間距離5m 地点で -55 dBm 以上を達成しており、無線通信が可 能な信号強度であることを確認した.実際の通信にお いては、外来波や SNR なども考慮する必要があるが、

Fig. 16 Result of measured RSSI.

直接波だけでなく壁や床などからの反射波や回折波も 加わることで RSSI 値がより向上すると考えられる.

4. 湾曲時のアンテナ特性

本アンテナは患者が前屈やかがむ姿勢を取ったとき など,使用中に湾曲することも考えられる.湾曲した 際に通信に問題が生じるようなアンテナ特性の変化 があってはならない.そこで,図17のような直径40 mmの発泡スチロール製円柱の側面に本アンテナを貼 り付けた状態で左右曲げ(Vertical direction bend), 上下曲げ(Horizontal direction bend)の2通りに湾 曲させてアンテナ特性を測定した.本アンテナは人体 の胸部または背部に装着することを想定しているため, 今回検討した条件以上の湾曲は生じないものとした.

図 18 に湾曲した状態での反射係数の測定結果を示 す. 左右曲げ,上下曲げの両方の条件で反射係数が増 加したことが確認できる.左右曲げでは,最も整合す る周波数はほぼ変化せず,反射係数が2 dB 程度増加 している.上下曲げでは最も整合する周波数が低周波 側に 20 MHz 程度移動し,反射係数は6 dB 増加する 結果となった.この傾向は関連研究 [5],[14],[15] にお いても同様のことが確認でき,全ての条件において反 射係数-10 dB 以下を達成しているため本アンテナは 湾曲した状態でも良好に動作しているといえる.

図 19 に湾曲した状態での放射パターンの測定結果 を示す.左右曲げでは,通常時と比較して 0 deg 方向 で zx 面 E_{θ} は 1.7 dBi, E_{φ} は 1.8 dBi 低下した.上 下曲げでは,通常時と比較して 0 deg 方向で zx 面 E_{θ} は 6.7 dBi, E_{φ} は 1.5 dBi 低下し,左右曲げと比べて 上下曲げ時は利得が大きく低下する結果となった.こ れは,上下曲げの場合,給電 MSL が給電方向である y 方向に大きく折り曲がるため,フェルト及び導電性 布の繊維の伸縮に起因する MSL 上の電流経路の変化 が原因であると考えられる.また,放射素子の繊維の

Fig. 19 Radiation pattern under bending condition.

方向によって特性が変化することを確認している.し かし,通信が困難になるほどの大きな特性劣化は認め られない.

5. む す び

本論文では、5.2 GHz 帯生体情報モニタリング用 布アンテナを提案し、その設計手順について概説する とともに、本アンテナの自由空間における基本特性を 数値解析と実験計測により検証し、設計目標を満たし ていることを確認した.筋肉ファントムを用いた反射 係数と放射パターンについての数値解析と実験計測 による人体近傍でのアンテナ特性評価においても、良 好なアンテナ特性を示した.通信実験では、実際に無 線 LAN 周波数を利用した受信信号強度の測定を行い、 本アンテナを用いた無線通信が可能であることを示し た.また、湾曲状態を想定した実験を実施し、本アン テナが使用中に湾曲した場合でも良好に動作すること を確認した.

献

文

- 医療用テレメーターにおける生体信号伝送の双方向化 等に関する調査検討会, "医療用テレメーターにおける生 体信号伝送の双方向化等に関する調査検討報告書,"総務省, http://www.soumu.go.jp/soutsu/hokuriku/resarch/ tm/hokokusho.html, March 2013.
- [2] 石田 開, 新山大地,藤原康作, 塚尾 浩, 廣瀬 稔, "医 療機関における無線 LAN の使用状況の調査," 医療電磁 環境研究会, no.2, pp.13–14, 東京, 日本, Aug. 2016.
- [3] Y. Nakatani and M. Takahashi, "Textile antenna for biological information monitoring," International Symposium on Antennas Propag., Okinawa, Japan, pp.986–987, Oct. 2016.
- [4] C. Hertleer, H. Rogier, L. Vallozzi, and F. Declercq, "A textile antenna based on high-performance fabrics," IEEE Antennas Propag., EuCAP 2007, pp.1–5, Nov. 2007.
- [5] M. Tanaka and J.H. Jang, "Wearable microstrip antenna," IEEE Antennas Propag. Society International Symposium, vol.2, pp.704–707, 2003.
- [6] M. Tanaka and J.H. Jang, "Wearable microstrip antenna for satellite communications," IEICE Trans. Commun., vol.E87-B, no.8, pp.2067–2071, Aug. 2004.
- [7] H.C. Yang, H.I. Azeez, C.K. Wu, and W.S. Chen, "Design of a fully textile dualband patch antenna using denim fabric," 2017 IEEE International Conference on Computational Electromagnetics. Kumamoto, Japan, pp.185–187, March 2017. DOI: 10.1109/COMPEM.2017.7912820
- [8] D.L. Paul, H. Giddens, M.G. Paterson, G.S. Hilton, and J.P. McGeehan, "Impact of body and clothing on a wearable textile dual band antenna at digital tele-

vision and wireless communications bands," IEEE Trans. Antennas Propag., vol.61, no.4 pp.2188–2194, April 2013. DOI: 10.1109/TAP.2012.2232632

- [9] M.E. Jalil, M.K.A. Rahim, N.A. Samsuri, N.A. Murad, N. Othman, and H.A. Majid, "On-body investigation of dual band diamond textile antenna for wearable applications at 2.45 GHz and 5.8 GHz," European Conference on Antennas and Propagation (EuCAP), pp.414–417, Gothenburg, Sweden, April 2013.
- [10] Yi. Huang and K. Boyle, Antennas From Theory to Practice, John Wiley & Sons, Hoboken, 2008.
- [11] Y.T. Lo and S.W. Lee, Antenna Handbook Theory, Applications & Design, 24-pp.19–24-pp.20, Van Nostrand Rein Company, NY, 1988.
- [12] IBS Japan, "MetaGeek ソリューション RSSI について," http://www.ibsjapan.co.jp/tech/details/metageeksolution/understanding-rssi.html, 参照 Oct. 2017.
- [13] NirSoft, "WifiinfoView v2.30," http://www.nirsoft. net/utils/wifi_information_view.html, 参照 Oct. 2017.
- [14] A. Tronquo, H. Rogier, and C. Hertleer, "Robust planar textile antenna for wireless body LANs operating in 2.45 GHz ISM band," IET Electronics Letters, vol.42, pp.142–143, Feb. 2006. DOI: 10.1049/el:20064200
- [15] C. Hertleer, H. Rogier, L. Vallozzi, and L.V. Langenhove, "A textile antenna for offbody communication integrated into protective clothing for firefighters," IEEE Trans. Antennas Propag., vol.57, no.4, pp.919–925, April 2009. DOI: 10.1109/TAP.2009.2014574

⁽平成 29 年 11 月 7 日受付, 30 年 2 月 5 日再受付, 4 月 4 日早期公開)

山中 大輔 (学生員)

平 29 千葉大・工在学中. 現在, 布アン テナの研究に従事.

高橋 応明 (正員:フェロー)

平元東北大・工・電気卒.平6東工大大 学院博士課程修了.同年武蔵工大・工・電 気・助手.同大講師を経て,平12東京農 工大・工・電気電子・助教授.平16千葉 大・フロンティアメディカル工学研究開発 センター・准教授.衛星放送受信用アンテ

ナ,平面アンテナ,小形アンテナ,RFID,環境電磁工学,人体 と電磁波との相互作用の研究に従事.工博.IEEEシニア会員.