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PAPER
Analysis of a Wireless Power Transfer System by the Impedance
Expansion Method Using Fourier Basis Functions

Nozomi HAGA†a), Member and Masaharu TAKAHASHI††b), Fellow

SUMMARY The impedance expansion method (IEM), which has been
previously proposed by the authors, is a circuit-modeling technique for
electrically-very-small devices. This paper provides a new idea on the
principle of undesired radiation in wireless power transfer systems by em-
ploying IEM. In particular, it is shown that the undesired radiation is due
to equivalent infinitesimal dipoles and loops of the currents on the coils.
key words: wireless power transfer, method of moments, impedance ex-
pansion method, Fourier basis functions

1. Introduction

Wireless power transfer (WPT) technology [1] will be ap-
plied to various devices such as low-power mobile terminals
and high-power electric vehicles, and manyWPT studies are
being conducted in various research fields including power
electronics, antenna engineering, and electromagnetic com-
patibility. Regardless of the field, it is important to under-
stand the operating principle of the coupling devices (coils
or antennas) to make them efficient and reduce undesired
radiation.

In this regard, the impedance expansion method (IEM),
which is a circuit-modeling technique for electrically-very-
small devices, was proposed by the authors [2], [3]. In the
IEM, self- andmutual impedances in themethod ofmoments
(MoM) [4] are expanded into the Laurent series with respect
to the complex angular frequency s = jω, and the terms that
are proportional to s−1 and s are represented by capacitors
and inductors, respectively, whereas the higher-degree terms
are represented by dependent voltage sources.

This paper provides a new idea on the principle of un-
desired radiation in WPT systems by employing IEM. In a
similar research, Hirayama et al. have reported that the radia-
tion in WPT systems can be explained by equivalent electric
dipoles of the currents on the coils [5]. On the other hand,
this paper shows that the radiation in WPT systems can be
explained by introducing equivalent infinitesimal loops in
addition to the equivalent infinitesimal dipoles.

Because IEM is based on the MoM, the current dis-
tributions on conductors are expanded into a set of basis
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functions. In this paper, the Fourier basis functions are em-
ployed because of the following characteristics:

1. The required number of unknowns (basis functions) is
expected to be small because the current distributions
on the coils are approximately sinusoidal.

2. Some of the self- and mutual impedance components
between basis functions can be calculated analytically,
and this is useful for understanding the operation prin-
ciple of the system.

Among them, the second point is important to discuss the
behaviors of the equivalent infinitesimal dipoles and loops.

This paper is organized as follows. Section 2 describes
the analysis model and the Fourier basis functions dealt
with in this paper. Section 3 describes the self- and mutual
impedances between the basis functions. Section 4 describes
the system of linear equations to be solved and the procedure
to obtain S-parameters, radiated power, and conduction loss
power. Section 5 describes a numerical example. Section 6
concludes the paper.

2. Analysis Model

2.1 Structure of the Model

Figure 1 shows the WPT system discussed in this paper.
Each transmitting (Tx) and receiving (Rx) side consists of a
feeding loop and a resonance coil, and they are symmetrically
placedwith respect to the x y-plane of z = 0. The parameters

Fig. 1 WPT system.

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers
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representing the dimensions of the system are defined as
follows:

a radius of the wires,
b0 radius of the loops,
b radius of the coils,
c pitch of the coils,
d0 distance between the Tx and Rx loops,
d distance between the Tx and Rx coils,
N number of turns of the coils.

The positions on the central axes of the respective elements
can be expressed in terms of a parametric variable u as
follows:

1. Position on the Tx loop:

r (u) = x̂b0 cos(2πu) + ŷb0 sin(2πu) − ẑd0/2, (1)

where 0 ≤ u ≤ 1.
2. Position on the Tx coil:

r (u) = x̂b cos(2πu) + ŷb sin(2πu)
+ ẑ[c(u − N/2) − d/2], (2)

where 0 ≤ u ≤ N .
3. Position on the Rx loop:

r (u) = x̂b0 cos(2πu) + ŷb0 sin(2πu) + ẑd0/2, (3)

where 0 ≤ u ≤ 1.
4. Position on the Rx coil:

r (u) = x̂b cos(2πu) + ŷb sin(2πu)
− ẑ[c(u − N/2) − d/2], (4)

where 0 ≤ u ≤ N .

2.2 Basis Functions

In the IEM analysis used in this paper, the current distri-
butions on the loops and the coils are approximated to be
filamentary along the wire axis, i.e. this is the so-called thin-
wire approximation.

Because the dimensions of the loops are much smaller
than the wavelength, the current distributions on the loops
are assumed to be uniform along the axis of the wire. In
other words, the basis function for the Tx loop FT0(u) and
that for the Rx loop FR0(u) are as follows:

FT0(u) = FR0(u) = −x̂ sin(2πu) + ŷ cos(2πu). (5)

On the other hand, the current distributions on the coils
are expanded into a set of Fourier basis functions, as de-
scribed earlier. The definition of the basis function for the
Tx coil FTm(u) and that for the Rx coil FRm(u) are as fol-
lows:

FTm(u) =
−x̂ sin(2πu) + ŷ cos(2πu) + ẑh

√
1 + h2

sin
(mπu

N

)
,

(6)

FRm(u) =
−x̂ sin(2πu) + ŷ cos(2πu) − ẑh

√
1 + h2

sin
(mπu

N

)
,

(7)

where m ≥ 1 and h = c/(2πb). Using the Fourier basis
functions, the current on the Tx coil IT (u) and that on the
Rx coil IR (u) are expanded as follows:

IT (u) =
NF∑
m=1

ITmFTm(u), (8)

IR (u) =
NF∑
m=1

IRmFRm(u), (9)

where NF is the maximum degree of the Fourier series, and
ITm and IRm are the current coefficients for FTm(u) and
FRm(u), respectively.

3. Self- and Mutual Impedances between Basis Func-
tions

In this paper, the self- and mutual impedances are denoted
in a way such that: ZT0,T0 is the self-impedance of the basis
function FT0, ZTm,Rn is the mutual impedance between the
basis functions FTm and FRn, and so on. In the IEM, the
self- and mutual impedances are expanded into the Laurent
series such that:

ZTm,Tn '

NL∑
i=−1

siZ (i)
Tm,Tn, (10)

ZTm,Rn '

NL∑
i=−1

siZ (i)
Tm,Rn, (11)

where NL is the maximum degree of the Laurent series,
Z (i)
Tm,Tn and Z (i)

Tm,Rn are constants independent of s, and
m ≥ 0 and n ≥ 0. In [2], it has been shown that the self-
impedance component that is proportional to s2 corresponds
to the radiation resistance of an infinitesimal dipole of which
length is equal to the integrated value of the basis function.
In addition, this section shows that the self-impedance com-
ponent that is proportional to s4 corresponds to the radiation
resistance of an equivalent infinitesimal loop of the basis
function.

3.1 Integral Representations

According to the reciprocity theorem and the geometrical
symmetry between the Tx and Rx sides, the expressions for
the self- and mutual impedances between the basis functions
can be consolidated into the following six integral represen-
tations. Here, ζ is the wave impedance, v is the propagation
velocity of the electromagnetic waves, and R is the distance
between the source and the observation points, which shall
be offset by the radius a if they are on the same element.

1. Self-impedance of the basis function on the loop:
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Z (i)
T0,T0 = Z (i)

R0,R0 =
(−1)i−1ζ

(i − 1)!4πv i

∫ 1

0

∫ 1

0

(2πb0)2 cos[2π(u − u′)]Ri−2du′du, (12)

where i ≥ 1 and

R =
√

a2 + 4b2
0 sin2[π(u − u′)]. (13)

2. Mutual impedance between the basis functions on the
loop and the coil at the same side:

Z (i)
T0,Tm

= Z (i)
Tm,T0 = Z (i)

R0,Rm = Z (i)
Rm,R0

=
(−1)i−1ζ

(i − 1)!4πv i

∫ 1

0

∫ N

0
(2π)2b0b cos[2π(u − u′)]

sin
(mπu′

N

)
Ri−2du′du, (14)

where m ≥ 1, i ≥ 1, and

R =

√
(b0 − b)2 + 4b0b sin2[π(u − u′)]
+ [c(2u′ − N ) + d0 − d]2/4

. (15)

3. Self-/mutual impedance between the basis functions on
the same coil:

Z (−1)
Tm,Tn = Z (−1)

Tn,Tm = Z (−1)
Rm,Rn = Z (−1)

Rn,Rm

=
ζv

4π

∫ N

0

∫ N

0

mnπ2

N2 cos
(mπu

N
)

cos
( nπu′

N

) 1
R

du′du,

(16)

Z (i)
Tm,Tn = Z (i)

Tn,Tm = Z (i)
Rm,Rn = Z (i)

Rn,Rm

=
(−1)i−1ζ

(i − 1)!4πv i

∫ N

0

∫ N

0

{
(2πb)2 cos[2π(u − u′)] + c2}

sin
(mπu

N

)
sin

( nπu′

N

)
Ri−2du′du

+
(−1)i+1ζ

(i + 1)!4πv i

∫ N

0

∫ N

0

mnπ2

N2

cos
(mπu

N
)

cos
( nπu′

N

)
Ridu′du, (17)

where m ≥ 1, n ≥ 1, i ≥ 1, and

R =
√

a2 + 4b2 sin2[π(u − u′)] + c2(u − u′)2. (18)

4. Mutual impedance between the basis functions on the
different loops:

Z (i)
T0,R0 = Z (i)

R0,T0 =
(−1)i−1ζ

(i − 1)!4πv i

∫ 1

0

∫ 1

0

(2πb0)2 cos[2π(u − u′)]Ri−2du′du, (19)

where i ≥ 1 and

R =
√

4b2
0 sin2[π(u − u′)] + d2

0 . (20)

5. Mutual impedance between the basis functions on the

loop and the coil at the opposite sides:

Z (i)
T0,Rm = Z (i)

Rm,T0 = Z (i)
R0,Tm

= Z (i)
Tm,R0

=
(−1)i−1ζ

(i − 1)!4πv i

∫ 1

0

∫ N

0
(2π)2b0b cos[2π(u − u′)]

sin
(mπu′

N

)
Ri−2du′du, (21)

where m ≥ 1, i ≥ 1, and

R =

√
(b0 − b)2 + 4b0b sin2[π(u − u′)]
+ [c(2u′ − N ) − d0 − d]2/4

. (22)

6. Mutual impedance between the basis functions on the
different coils:

Z (−1)
Tm,Rn = Z (−1)

Rn,Tm = Z (−1)
Rm,Tn = Z (−1)

Tn,Rm

=
ζv

4π

∫ N

0

∫ N

0

mnπ2

N2 cos
(mπu

N

)
cos

( nπu′

N

) 1
R

du′du,

(23)

Z (i)
Tm,Rn = Z (i)

Rn,Tm = Z (i)
Rm,Tn = Z (i)

Tn,Rm

=
(−1)i−1ζ

(i − 1)!4πv

∫ N

0

∫ N

0

{
(2πb)2 cos[2π(u − u′)] − c2}

sin
(mπu

N

)
sin

( nπu′

N

)
Ri−2du′du

+
(−1)i+1ζ

(i + 1)!4πv i

∫ N

0

∫ N

0

mnπ2

N2

cos
(mπu

N

)
cos

( nπu′

N

)
Ridu′du, (24)

where m ≥ 1, n ≥ 1, i ≥ 1, and

R =
√

4b2 sin2[π(u − u′)] + [c(u + u′ − N ) − d]2.

(25)

3.2 Closed-Form Expressions for Even-Degree Compo-
nents

Among the impedance components described here, those in
which i is even can be integrated analytically. Here, let us
consider several important components.

(1) Components of i = 2

The self- and mutual impedance components between the
basis functions on the loops are zero, as follows:

Z (2)
T0,T0 = Z (2)

T0,R0 = 0. (26)

This means that no electric dipole is constructed by FT0 and
FR0.

On the other hand, the self- and mutual impedances
between the basis functions on the same coil are nonzero if
both m and n are odd or m = n = 2N . For example, the
self-impedance component of m = n = 1 is as follows:

Z (2)
T1,T1 = −

ζ

6πv2

[
b2 16N2

(4N2 − 1)2 + c2 4N2

π2

]
. (27)
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It is notable that s2Z (2)
T1,T1 is equivalent to the radiation re-

sistance of an infinitesimal dipole [6] with the length

l =

√
b2 16N2

(4N2 − 1)2 + c2 4N2

π2 . (28)

Similarly, the mutual impedance components between
the basis functions on the different coils are nonzero if both
m and n are odd or m = n = 2N . For example, the mutual
impedance component of m = n = 1 is as follows:

Z (2)
T1,R1 = −

ζ

6πv2

[
b2 16N2

(4N2 − 1)2 − c2 4N2

π2

]
. (29)

If the absolute value of the second term in the brackets is
larger than that of the first term, s2Z (2)

T1,R1 < 0. This means
that the equivalent infinitesimal dipoles of FT1 and FR1 are
oriented so that their radiations are canceled partially.

(2) Components of i = 4

The self- and mutual impedance components between the
basis functions on the loops are as follows:

Z (4)
T0,T0 = Z (4)

T0,R0 =
ζ

6v4 πb4
0. (30)

It is notable that s4Z (4)
T0,T0 is equivalent to the radiation re-

sistance of an infinitesimal loop [6] with the radius b0. In
addition, because s4Z (4)

T0,R0 > 0, the equivalent infinitesimal
loops of FT0 and FR0 are oriented so that their radiations are
enhanced.

On the other hand, the self- and mutual impedance
components between the basis functions on the same coil
are nonzero except if only one of either m or n is even. For
example, the self-impedance component of m = n = 1 is as
follows:

Z (4)
T1,T1 =

ζ

30πv4

{
−a2b2 16N2

(4N2 − 1)2 − a2c2 4N2

π2

+ b4
[
20N2 −

32N2

(4N2 − 1)2 +
12N2

(16N2 − 1)2

]

+ b2c2
[
−

8N2

π2 +
8N2(208N4 − 8N2 + 1)

(4N2 − 1)4π2

−
8N4

(4N2 − 1)2

]
− c4

( 1
π2 −

8
π4

)
N4

}
'

2ζ
3πv4 b4N2, (31)

where the last approximation holds true when b � a, b � c,
and N � 1. It should be noted that the approximate expres-
sion for s4Z (4)

T1,T1 is equivalent to the radiation resistance of
an infinitesimal loop with the radius b and turns (2/π)N .
Here, 2/π is the mean value of sin(πu/N ), which is con-
tained in FT1, in the range 0 ≤ u ≤ N . Therefore, the
behavior of s4Z (4)

T1,T1 can be considered to be similar to that
of the radiation resistance of an infinitesimal loop.

Moreover, the mutual impedance components between

the basis functions on the different coils are basically
nonzero. For example, the mutual impedance component
of m = n = 1 is as follows:

Z (4)
T1,R1 =

ζ

30πv4

{
b4

[
20N2 −

32N2

(4N2 − 1)2 +
12N2

(16N2 − 1)2

]

+ b2c2
[ 8N2

π2 +
8N2(16N4 + 16N2 − 1)

(4N2 − 1)4π2

−
8N4

(4N2 − 1)2

]
− b2d2 16N2

(4N2 − 1)2

+ c4
( 1
π2 −

8
π4

)
N4 + c2d2 2N2

π2

}
'

2ζ
3πv4 b4N2, (32)

where the last approximation holds true when b � a, b � c,
and N � 1, and is the same as that for the self-impedance
component Z (4)

T1,T1. In addition, because s4Z (4)
T1,R1 > 0, the

equivalent infinitesimal loops of FT1 and FR1 are oriented
so that their radiations are enhanced.

3.3 Components Due to Surface Impedance of Conductors

Because conduction loss is not negligible in usual WPT
systems, the impedance components due to the surface
impedance of conductors ζc =

√
sµ/σ should be added to

the self- and mutual impedances described in the previous
section. Here, µ andσ are the permeability and conductivity
of conductors, respectively.

Such components between the basis functions that do
not overlap each other are zero. Also, according to the or-
thogonality of sinusoidal functions, the components ofm , n
are zero. Therefore, only the self-impedance components
should be taken into account. In particular, the respective
components are as follows.

1. Self-impedance of the basis function on the loops:

Zc
T0,T0 = Zc

R0,R0 = ζc
b0
a
. (33)

2. Self-impedance of the basis function on the coils:

Zc
Tm,Tm = Zc

Rm,Rm = ζc
N
√

(2πb)2 + c2

4πa
, (34)

where m ≥ 1.

4. System of Linear Equations to be Solved

This paper discusses the S-parameters, the radiated power,
and the conduction loss power when two ports are mounted
on the Tx and Rx loops. In this case, the system of linear
equations to be solved is as follows:

NF∑
n=0

NL∑
i=−1

siZ (i)
Tm,TnITn +

NF∑
n=0

NL∑
i=−1

siZ (i)
Tm,RnIRn
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+ Zc
Tm,TmITm = VTm, m = 0, . . . , NF, (35)

NF∑
n=0

NL∑
i=−1

siZ (i)
Rm,TnITn +

NF∑
n=0

NL∑
i=−1

siZ (i)
Rm,RnIRn

+ Zc
Rm,RmIRm = VRm, m = 0, . . . , NF, (36)

VT0 = V0 − R0IT0, (37)
VR0 = −R0IR0, (38)
VTm = VRm = 0, m = 1, . . . , NF, (39)

where R0 is the characteristic impedance of the ports, and V0
is the electromotive force of the Tx port and can be expressed
in terms of the available power Pa as V0 = 2

√
R0Pa.

In terms of the current coefficients, which are the solu-
tions of Eqs. (35)–(39), the S-parameters can be calculated
as follows:

S11 = 1 −
2R0IT0

V0
, S21 = −

2R0IR0
V0

. (40)

In addition, the radiated power Pr can be obtained as
the sum of subcomponents due to the respective self-/mutual
impedance components:

P(i)
r,Tm,Tm = siZ (i)

Tm,Tm |ITm |
2, (41)

P(i)
r,Tm,Tn = siZ (i)

Tm,Tn Re(2ITmI∗Tn), m < n, (42)

P(i)
r,Rm,Rm = siZ (i)

Rm,Rm |IRm |
2, (43)

P(i)
r,Rm,Rn = siZ (i)

Rm,Rn Re(2IRmI∗Rn), m < n, (44)

P(i)
r,Tm,Rn = siZ (i)

Tm,Rn Re(2ITmI∗Rn), (45)

P(i)
r =

NF∑
m=0

NF∑
n=m

P(i)
r,Tm,Tn +

NF∑
m=0

NF∑
n=m

P(i)
r,Rm,Rn

+

NF∑
m=0

NF∑
n=0

P(i)
r,Tm,Rn, (46)

Pr = P(2)
r + P(4)

r + · · · , (47)

where the asterisks denote the complex conjugates. For
example, P(i)

r,Tm,Tm is the subcomponent due to the self-
impedance component Z (i)

Tm,Tm. As for the case i = 2, the
relation P(2)

r,Tm,Tm ≥ 0 holds true because s2Z (2)
Tm,Tm ≥ 0.

Similarly, in the case i = 4, the relation P(4)
r,Tm,Tm ≥ 0

holds true if s4Z (4)
Tm,Tm ≥ 0. In contrast, the subcomponent

P(i)
r,Tm,Rn, for example, may be negative, depending on the

sign of siZ (i)
Tm,Rn and the phase relation of the current coef-

ficients ITm and IRn. In this case, the radiations due to ITm

and IRn are canceled partially. In addition, P(i)
r is the sum of

the subcomponents due to impedance components that are
proportional to si .

On the other hand, the conduction loss power Pc can be
calculated as follows:

Pc,Tm,Tm = Re(Zc
Tm) |ITm |

2, (48)
Pc,Rm,Rm = Re(Zc

Rm) |IRm |2, (49)

Pc =

NF∑
m=0

Pc,Tm,Tm +

NF∑
m=0

Pc,Rm,Rm. (50)

5. Numerical Example

5.1 Calculation Conditions

Discussions in the remaining sections are made based on the
numerical results with the following condition:

a = 0.8mm, b0 = 93mm, b = 118mm,
c = 8mm, d0 = 280mm, d = 200mm,
N = 10, σ = 58MS/m.

These parameters were determined so that the transmission
coefficient |S21 | in the 50-Ω system is maximum at around
13.56MHz. In addition, the available power of the Tx port
is assumed to be Pa = 1W.

As for the analysis condition, the maximum degrees of
the Fourier and Laurent series were set to NF = 25 and
NL = 4, respectively. In this case, the total radiated power
can be obtained as Pr = P(2)

r + P(4)
r . It has already been

confirmed that the calculated results have almost converged
under this condition. For example, the maximum difference
between |S11 | when NF = 25 and 27 is 0.383 dB in the
frequency range 12–15MHz. Moreover, the maximum dif-
ference between Pr when NL = 4 and 6 is 8.31× 10−4 dB in
the same frequency range.

Incidentally, the double integrals in the expressions for
the self- and mutual impedance components were numeri-
cally calculated using the tanh-sinh quadrature [7]. Among
the numerical results, the components of even i were com-
pared with those obtained by the analytical expressions. As
a result, it has been confirmed that the numerical results have
approximately 10-digit accuracy.

In addition, the same problem was analyzed by means
of a usual full-wave MoM to validate the results by the IEM.
In the full-wave MoM used here, the current distributions
on the wires are represented by surface currents, instead of
the thin-wire approximation. The surface of the wires is
divided into quadrangular segments. The division number
along the circumference direction is 12 whereas that along
the axial direction is 48 per 1 turn. The details about the
basis functions are described in the Appendix. In addition,
the feeding ports are positioned at u = 0 on the loops.

5.2 Calculated Results

Figure 2 plots the frequency dependences of (a) |S11 |,
(b) |S21 |, (c) Pr , and (d) Pc , where the markers denoted
by “MoM” indicate the results by the full-wave MoM for
comparison. Regarding (c) Pr , the components P(2)

r and
P(4)
r obtained by the IEM are plotted in addition to the total

power. All the results obtained by the IEM and the full-
wave MoM agree with each other. The slight discrepancy in
Pc is because the variation of the current density along the
circumference direction of the wire is ignored in the IEM be-
cause of the thin-wire approximation. However, the results
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Fig. 2 Frequency dependences of (a) |S11 |, (b) |S21 |, (c) Pr , and (d) Pc .

by the IEM can be considered to be reasonable because the
difference is less than 0.51 dB.

Now, we focus on the fact that P(2)
r and P(4)

r are
maximum at different frequencies, namely 13.85MHz and
13.17MHz, respectively. To clarify the reason, the sub-
components of P(2)

r and P(4)
r are discussed here. Table 1

shows several low-degree components of P(2)
r , where the

components known to be zero are not shown. In both the
frequencies, the absolute values of the following components
are superior to those of the other components:

• P(2)
r,T1,T1, which is determined by the magnitude of IT1,

• P(2)
r,R1,R1, which is determined by the magnitude of IR1,

• P(2)
r,T1,R1, which is determined by the magnitudes and

the phase relation of IT1 and IR1.

Here, it should be noted that P(2)
r,T1,R1 is negative at

13.17MHz and is positive at 13.85MHz. Because the cal-
culated value of the related mutual impedance component is
Z (2)
T1,R1 ' 5.45685×10−19 Ω ·s2, s2Z (2)

T1,R1 < 0. As described
earlier, this means that the equivalent infinitesimal dipoles
of the basis functions FT1 and FR1 are oriented so that their
radiations are canceled partially. Besides, the phase differ-
ence between IT1 and IR1 is approximately 46° at 13.17MHz
and is approximately 137° at 13.85MHz. Therefore, the ra-
diation is partially canceled at 13.17MHz and is enhanced
at 13.85MHz. This is consistent with the results shown in
Table 1.

Subsequently, Table 2 shows several low-degree com-
ponents of P(4)

r , where the components known to be zero or
less than 10−10 W are not shown. In both the frequencies,
the absolute values of the following components are superior
to those of the other components:

• P(4)
r,T1,T1, which is determined by the magnitude of IT1,

• P(4)
r,R1,R1, which is determined by the magnitude of IR1,

• P(4)
r,T1,R1, which is determined by the magnitudes and

the phase relation of IT1 and IR1.

Here, it should be noted that P(4)
r,T1,R1 is positive at 13.17MHz

and is negative at 13.85MHz. This relation is opposite to that
of P(2)

r,T1,R1. Because the calculated value of the related mu-
tual impedance component is Z (4)

T1,R1 ' 1.91939×10−34Ω·s4,
s2Z (4)

T1,R1 > 0. As described earlier, this means that the
equivalent infinitesimal loops of the basis functions FT1 and
FR1 are oriented so that their radiations are enhanced. Ac-
cording to the phase difference between IT1 and IR1 de-
scribed earlier, the radiation is enhanced at 13.17MHz and
is partially canceled at 13.85MHz. This is consistent with
the results shown in Table 2.

In addition, because the total radiated power Pr = P(2)
r +

P(4)
r obtained by the IEM agrees with that by the full-wave

MoM, it can be concluded that the undesired radiations in the
WPT system consist of the radiations due to the equivalent
dipoles and loops of the currents on the coils.
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Table 1 Subcomponents of P(2)
r (Unit: [W]).

13.17 MHz 13.85 MHz

P(2)
r,T 1,T 1 1.01137 × 10−4 1.45124 × 10−4

P(2)
r,T 1,T 3 9.04016 × 10−6 1.24252 × 10−5

P(2)
r,T 1,T 5 2.73084 × 10−6 3.76786 × 10−6

P(2)
r,T 3,T 3 5.28422 × 10−7 6.95677 × 10−7

P(2)
r,T 3,T 5 5.00880 × 10−7 6.61958 × 10−7

P(2)
r,T 5,T 5 1.28353 × 10−7 1.70284 × 10−7

P(2)
r,R1,R1 5.09615 × 10−5 6.88061 × 10−5

P(2)
r,R1,R3 4.55032 × 10−6 5.89852 × 10−6

P(2)
r,R1,R5 1.37378 × 10−6 1.78993 × 10−6

P(2)
r,R3,R3 2.65693 × 10−7 3.30673 × 10−7

P(2)
r,R3,R5 2.51703 × 10−7 3.14864 × 10−7

P(2)
r,R5,R5 6.44640 × 10−8 8.10529 × 10−8

P(2)
r,T 1,R1 −8.91319 × 10−5 1.31858 × 10−4

P(2)
r,T 1,R3 −1.49265 × 10−6 2.12755 × 10−6

P(2)
r,T 1,R5 2.38393 × 10−7 −3.42316 × 10−7

P(2)
r,T 3,R1 −1.49469 × 10−6 2.12448 × 10−6

P(2)
r,T 3,R3 3.30340 × 10−7 −4.52386 × 10−7

P(2)
r,T 3,R5 2.09856 × 10−7 −2.89522 × 10−7

P(2)
r,T 5,R1 2.38981 × 10−7 −3.41404 × 10−7

P(2)
r,T 5,R3 2.10087 × 10−7 −2.89170 × 10−7

P(2)
r,T 5,R5 1.18741 × 10−7 −1.64652 × 10−7

6. Conclusion

In this paper, the basic source of undesired radiation in WPT
systems was elucidated by use of IEM. The currents on
the coils were expanded into the Fourier basis functions,
and several analytical expressions for the self- and mutual
impedance components between the basis functions were
derived. It was noted that the self-impedance components
that are proportional to s2 correspond to the radiation re-
sistance of the equivalent infinitesimal dipoles of the basis
functions, as described in the previous reports. In addition,
it was shown that the self-impedance components that are
proportional to s4 correspond to the radiation resistance of
the equivalent infinitesimal loops of the basis functions.

Subsequently, the S-parameters between the Tx and Rx
ports, the radiated power, and the conduction loss power
were numerically calculated. The results by the IEM and the
full-wave MoM agree with each other, which confirms the
validity of both the methods.

Further, the radiated power components P(2)
r and P(4)

r ,
which are due to the impedance components proportional to
s2 and s4, respectively, aremaximumat different frequencies.
At the frequency at which the component P(2)

r is maximum,
the radiations due to the equivalent infinitesimal dipoles of
the currents on the coils are enhanced. On the other hand,
at the frequency at which the component P(4)

r is maximum,
the radiations due to the equivalent infinitesimal loops of the
currents on the coils are enhanced. Furthermore, because the

Table 2 Subcomponents of P(4)
r (Unit: [W]).

13.17 MHz 13.85 MHz

P(4)
r,T 0,T 0 6.11897 × 10−7 4.29813 × 10−6

P(4)
r,T 0,T 1 −1.21981 × 10−5 −7.29486 × 10−5

P(4)
r,T 0,T 3 −3.83237 × 10−7 −2.19966 × 10−6

P(4)
r,T 0,T 5 −7.10250 × 10−8 −4.09563 × 10−7

P(4)
r,T 1,T 1 2.18545 × 10−4 3.46815 × 10−4

P(4)
r,T 1,T 3 1.37658 × 10−5 2.09247 × 10−5

P(4)
r,T 1,T 5 2.55334 × 10−6 3.89614 × 10−6

P(4)
r,T 3,T 3 2.16614 × 10−7 3.15385 × 10−7

P(4)
r,T 3,T 5 8.02309 × 10−8 1.17265 × 10−7

P(4)
r,T 5,T 5 7.40424 × 10−9 1.08636 × 10−8

P(4)
r,R0,R0 1.35174 × 10−6 1.53755 × 10−6

P(4)
r,R0,R1 −1.52609 × 10−5 −2.04935 × 10−5

P(4)
r,R0,R3 −4.79058 × 10−7 −6.17794 × 10−7

P(4)
r,R0,R5 −8.86969 × 10−8 −1.14972 × 10−7

P(4)
r,R1,R1 1.10122 × 10−4 1.64432 × 10−4

P(4)
r,R1,R3 6.92896 × 10−6 9.93339 × 10−6

P(4)
r,R1,R5 1.28448 × 10−6 1.85087 × 10−6

P(4)
r,R3,R3 1.08915 × 10−7 1.49910 × 10−7

P(4)
r,R3,R5 4.03178 × 10−8 5.57775 × 10−8

P(4)
r,R5,R5 3.71870 × 10−9 5.17096 × 10−9

P(4)
r,T 0,R0 8.19578 × 10−7 1.90358 × 10−6

P(4)
r,T 0,R1 −1.60646 × 10−5 2.50875 × 10−5

P(4)
r,T 0,R3 −5.05645 × 10−7 7.60304 × 10−7

P(4)
r,T 0,R5 −9.37766 × 10−8 1.42006 × 10−7

P(4)
r,T 1,R0 −3.42455 × 10−5 −2.07284 × 10−6

P(4)
r,T 1,R1 2.14677 × 10−4 −3.51228 × 10−4

P(4)
r,T 1,R3 6.74013 × 10−6 −1.06247 × 10−5

P(4)
r,T 1,R5 1.24767 × 10−6 −1.98134 × 10−6

P(4)
r,T 3,R0 −1.07879 × 10−6 −6.03870 × 10−8

P(4)
r,T 3,R1 6.74932 × 10−6 −1.06094 × 10−5

P(4)
r,T 3,R3 2.11543 × 10−7 −3.20388 × 10−7

P(4)
r,T 3,R5 3.90164 × 10−8 −5.95301 × 10−8

P(4)
r,T 5,R0 −2.00147 × 10−7 −1.10867 × 10−8

P(4)
r,T 5,R1 1.25074 × 10−6 −1.97607 × 10−6

P(4)
r,T 5,R3 3.90595 × 10−8 −5.94577 × 10−8

P(4)
r,T 5,R5 7.14774 × 10−9 −1.09613 × 10−8

total radiated power Pr = P(2)
r + P(4)

r obtained by the IEM
agrees with that yielded by the full-wave MoM, it can be
concluded that the undesired radiations in the WPT system
consist of those due to the equivalent dipoles and loops of
the currents on the coils.

Incidentally, an equivalent circuit model of the WPT
system can be obtained by using the self- and mutual
impedance components derived by the IEM. Unfortunately,
the scale of the equivalent circuit is not so small because the
total number of basis functions is 2+ 2NF = 52. However, a
small-scale equivalent circuit can be obtained by expanding
the currents on conductors into a few dominant eigenmodes.
The details will be discussed in further studies.
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Appendix: Basis Functions for Full-Wave MoM

The basis function Fm(r ) for the full-wave MoM is defined
over two neighboring quadrangular segments S−m and S+m,
which are shown in Fig. A· 1. The segment S−m is formed by
vertices a−m, b−m, c−m, and d−m. Similarly, the segment S+m is
formed by vertices a+m, b+m, c+m, and d+m. To define the basis
function, the position r±m on S±m is first expressed in terms of
parametric variables u and v , as follows:

r±m = (1 − u)(1 − v )a±m + u(1 − v )b±m
+ uvc±m + (1 − u)vd±m, (A· 1)

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. The basis function Fm(r )
is defined as follows:

Fm(r ) =




u
∂r−m
∂u

�����
∂r−m
∂u
×
∂r−m
∂v

�����

−1
, r ∈ S−m

−u
∂r+m
∂u

�����
∂r+m
∂u
×
∂r+m
∂v

�����

−1
, r ∈ S+m

. (A· 2)

If both S−m and S+m are rectangles, Fm(r ) is equivalent to the

Fig. A· 1 Two neighboring quadrangular segments S−m and S+m .

so-called rooftop function.
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