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PAPER
Circuit Modeling Technique for Electrically-Very-Small Devices
Based on Laurent Series Expansion of Self-/Mutual Impedances

Nozomi HAGA†a), Member and Masaharu TAKAHASHI††b), Fellow

SUMMARY This paper proposes a circuit modeling technique for
electrically-very-small devices, e.g. electrodes for intrabody communica-
tions, coils for wireless power transfer systems, high-frequency transform-
ers, etc. The proposed technique is based on the method of moments and
can be regarded as an improved version of the partial element equivalent
circuit method.
key words: equivalent circuit modeling, method of moments, impedance
expansion method

1. Introduction

Electrically-very-small devices are widely used for various
wireless and wired systems. Typical examples include elec-
trodes for intrabody communications [1], coils for wireless
power transfer systems [2], high-frequency transformers, etc.
It is well known that undesired resonances or radiations may
occur at the usual operating frequencies of these devices, and
they affect their operating characteristics or cause noises [3].
Therefore, these devices should be treated as problems of
high-frequency electromagnetic fields even if they are much
smaller than the wavelength.

Besides, the electromagnetic characteristics of
electrically-very-small devices may be approximated by
equivalent circuits. This approach has the benefits such that:
1. small-scale circuit models can easily be analyzed via

theoretical approaches, which give us an insight on the
operation mechanism of the devices;

2. the interaction between the electromagnetic fields and
the non-linear electronic circuits can be analyzed only
by importing the equivalent-circuit parameters into ver-
satile circuit simulators.
In the previous studies, various circuit-modeling meth-

ods have been proposed, and they can be categorized into
the following approaches:
1. those which derive analytical expressions for the circuit

parameters by simplifying the problems [4], [5];
2. those which determine the parameters of assumed cir-

cuit models so that the frequency characteristics of the
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circuits fit to those obtained via existing electromag-
netic simulators or measurements [6]–[8];

3. those which obtain the circuit parameters by discretiz-
ing the integral equations that hold true in the problems
[9]–[11].

The first approach gives us a clear insight on how to deter-
mine the physical parameters. However, its applicable scope
is limited in general. The second approach can be applied
to various problems without complicated considerations in-
volving Maxwell’s equations. This means, however, that
the physical meaning of the obtained circuit parameters is
hard to interpret. This paper employs the third approach,
which is well-balanced in terms of these points, and intends
to establish a basis for a versatile circuit modeling technique.

The method described in [9], [10] is called the partial
element equivalent circuit (PEEC) method, and is accepted
in the fields such as power electronics. Several features of
the PEEC method are the same as those of the method of
moments (MoM) [12], which is well-established in the fields
of antennas and propagation, because both of them are based
on the same integral equations. The method proposed in this
paper is based on the MoM, and at the same time, can be
regarded as an extension of the PEEC method and superior
to the conventional PEEC method in accuracy.

This paper is organized as follows. Section 2 derives
the Laurent series expansion of the self-/mutual impedances
between arbitrary basis functions, which is the basis of the
proposed method. In addition, the physical meaning of the
expanded expression is discussed. Section 3 deals with an
example problem to demonstrate the proposed method and
describes the relation between the proposed method and the
PEEC method. Subsequently, Sect. 4 shows numerical ex-
amples to compare the results obtained via the PEECmethod,
the proposed method, and the induced electromotive force
(EMF) method. Finally, Sect. 5 concludes this paper.

2. Laurent Series Expansion of Self-/Mutual
Impedances between Arbitrary Basis Functions

As described before, the proposed modeling technique is
based on the Laurent series expansion of the self-/mutual
impedances in the MoM. Whereas the previous studies have
derived the similar expressions for specific basis functions,
this paper derives a general expression for arbitrary basis
functions.

In Galerkin’s MoM, the self-/mutual impedance be-
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tween basis functions Fm(r ) and Fn(r ′) is given as follows
[13]:

Zmn = s
ζ

4πc

∫
S

∫
S

Fm(r ) · Fn(r ′)
e−sR/c

R
dS′dS

+
1
s
ζc
4π

∫
S

∫
S

[∇ · Fm(r )][∇′ · Fn(r ′)]
e−sR/c

R
dS′dS,

(1)

where s = jω is the complex angular frequency; ζ is the
wave impedance; c is the speed of light; r is the observation
point; r ′ is the source point; R = |r − r ′ | is the distance
between the observation and the source points; ∇ and ∇′
are the vector differential operators with respect to r and
r ′, respectively; and dS and dS′ are the surface elements
with respect to r and r ′, respectively. Besides, S is all the
closed surfaces on conductors. The basis functions shall be
frequency-independent real functions and shall satisfy the
following condition:

Fm(r ) · n̂ = 0, r ∈ S; m = 1, . . . , N, (2)

where n̂ is the outward unit normal vector at r on S, i.e. the
basis functions are tangential to S.

By expanding the exponential function in Eq. (1) into
the Taylor series, we get the Laurent series expansion of Zmn

as follows:

Zmn =

∞∑
i=−1

siZ (i)
mn, (3)

where the coefficients for the respective powers are as fol-
lows:

Z (−1)
mn =

ζc
4π

∫
S

∫
S

[∇ · Fm(r )][∇′ · Fn(r ′)]
1
R

dS′dS,

(4)
Z (0)
mn = 0, (5)

Z (i)
mn =

(−1)i−1ζ

(i − 1)!4πci

∫
S

∫
S

Fm(r ) · Fn(r ′)Ri−2dS′dS

+
(−1)i+1ζ

(i + 1)!4πci

∫
S

∫
S

[∇ · Fm(r )][∇′ ·Fn(r ′)]RidS′dS,

i ≥ 1, (6)

where the equality of Eq. (5) is proven in Appendix A.
It is notable that several low-order terms in Eq. (3) have

explicit physical meanings. The lowest-order term s−1Z (−1)
mn

is equivalent to the impedance of the capacitance

C =
1

Z (−1)
mn

=

{
ζc
4π

∫
S

∫
S

[∇ · Fm(r )][∇′ · Fn(r ′)]
1
R

dS′dS
}−1

.

Similarly, the term sZ (1)
mn is equivalent to the impedance of

the inductance

L = Z (1)
mn =

ζ

4πc

∫
S

∫
S

Fm(r ) · Fn(r ′)
1
R

dS′dS

+
ζ

8πc

∫
S

∫
S

[∇ · Fm(r )][∇′ · Fn(r ′)]R dS′dS,

where the first term in the right-hand side corresponds to
Neumann’s formula. Besides, the term s2Z (2)

mn can be sim-
plified as follows:

s2Z (2)
mn = −s2 ζ

6πc2

[∫
S

Fm(r ) dS
]
·

[∫
S

Fn(r ′) dS′
]
,

(7)

where the equality of Eq. (7) is proven in Appendix B. In
particular, the self-impedance component s2Z (2)

mm is equiv-
alent to the radiation resistance of the infinitesimal dipole
[14] with the length of

l =
�����

∫
S

Fm(r ) dS
�����
.

It should be noted that the infinite series in Eq. (3)
should be approximated by a finite series so that the residual
error is sufficiently small. However, the required number of
terms is expected to be small for the problems much smaller
than the wavelength. The proposed method is hereinafter
called the impedance expansion method (IEM).

3. Example Problem

As shown in Fig. 1, a straight wire with radius a and length 3l
has feeding ports 1 and 2 at z = l and 2l, respectively. In this
section, the self- and themutual impedances between the two
ports are formulated and the equivalent circuit is first derived
by the PEEC method. Then, it is shown that the equivalent
circuit by the IEM can be regarded as an extension of that
by the PEECmethod. Subsequently, they are compared with
the reference solution by the EMF method.

3.1 Formulation by PEEC Method

The PEEC method models the problem by the LC circuit

Fig. 1 A straight wire with two feeding ports.
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Fig. 2 Equivalent circuit by the PEEC method.

shown in Fig. 2. In the usual PEEC manner, inductive and
capacitive elements are alternately placed so that their half
segments overlap each other. In addition, the current and
the charge distributions are assumed to be uniform on each
inductive and capacitive element. In the present problem,
two inductive basis functions (m = 1, 2)

fm(z) =



1, |z − ml | < l/2
0, elsewhere

(8)

and three capacitive basis functions (m = 1, 2, 3)

gm(z) =



1/l, (m − 1)l < z < ml
0, elsewhere

(9)

are assumed on the central axis of the wire, as shown in
Fig. 3. It should be noted that the current and the charge
distributions expanded by these functions do not satisfy the
charge conservation law.

For a thin-wire structure, the expression for the self-
/mutual inductances between the inductive basis functions
[9], [10] can reduce to

Lmn =
ζ

4πc

∫ 3l

0

∫ 3l

0
fm(z) fn(z′)

1
R

dz′dz, (10)

where

R =
√

a2 + (z − z′)2. (11)

By substituting Eq. (8) into Eq. (10) and performing the in-
tegrations, the self-inductances L11 = L22 and the mutual
inductances L12 = L21 are calculated as follows:

L11 =
ζ l

4πc
*
,
2 arsinh

l
a
−

2
√

l2 + a2

l
+

2a
l

+
-
, (12)

L12 =
ζ l

4πc

(
2 arsinh

2l
a
− 2 arsinh

l
a

−

√
4l2 + a2

l
+

2
√

l2 + a2

l
−

a
l

+
-
. (13)

Similarly, the expression for the self-/mutual potential
coefficients [9], [10] can reduce to

Fig. 3 Basis functions used in the PEEC method.

pmn =
ζc
4π

∫ 3l

0

∫ 3l

0
gm(z) gn(z′)

1
R

dz′dz, (14)

where R is the same as that in Eq. (11). By substituting
Eq. (9) into Eq. (14) and performing the integrations, the
self-potential coefficients p11 = p22 = p33 and the mutual
potential coefficients p12 = p21 = p23 = p32, p13 = p31 are
calculated as follows:

p11 =
ζc
4πl

*
,
2 arsinh

l
a
−

2
√

l2 + a2

l
+

2a
l

+
-
, (15)

p12 =
ζc
4πl

(
2 arsinh

2l
a
− 2 arsinh

l
a

−

√
4l2 + a2

l
+

2
√

l2 + a2

l
−

a
l

+
-
, (16)

p13 =
ζc
4πl

(
3 arsinh

3l
a
− 4 arsinh

2l
a
+ arsinh

l
a

−

√
9l2 + a2

l
+

2
√

4l2 + a2

l
−

√
l2 + a2

l
+
-
. (17)

By using the obtained potential coefficients, the capacitances
in Fig. 2 can be obtained as follows:



c11 c12 c13
c21 c22 c23
c31 c32 c33


=



p11 p12 p13
p21 p22 p23
p31 p32 p33



−1

, (18)

Cm =

3∑
n=1

cmn, Cmn = −cmn. (19)
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By writing and solving the circuit equations of the
equivalent circuit in Fig. 2, the self- and the mutual
impedances are obtained as follows:

Z11 = Z22 = s−1Z (−1)
11 + sZ (1)

11 , (20)

Z12 = Z21 = s−1Z (−1)
12 + sZ (1)

12 , (21)

where

Z (−1)
11 = p11 − p12 − p21 + p22

=
ζc
4πl

(
−4 arsinh

2l
a
+ 8 arsinh

l
a

+
2
√

4l2 + a2

l
−

8
√

l2 + a2

l
+

6a
l

+
-
, (22)

Z (−1)
12 = p12 − p13 − p22 + p23

=
ζc
4πl

(
−3 arsinh

3l
a
+ 8 arsinh

2l
a

− 7 arsinh
l
a
+

√
9l2 + a2

l

−
4
√

4l2 + a2

l
+

7
√

l2 + a2

l
−

4a
l

+
-
, (23)

Z (1)
11 = L11, (24)

Z (1)
12 = L12. (25)

3.2 Formulation by IEM

In the IEM, the current distributions are assumed at the
central axis of the wire and expanded by piecewise linear
basis functions (m = 1, 2)

fm(z) =



l − |ml − z |
l

, |z − ml | < l

0, elsewhere
, (26)

as shown in Fig. 4. Besides, the charge distributions are
expanded by the derivatives of the basis functions

∂ fm(z)
∂z

=




ml − z
|ml − z |l

, |z − ml | < l

0, elsewhere
. (27)

It should be noted that the current and the charge distributions
expanded by these functions automatically satisfy the charge
conservation law.

For a thin-wire structure, Eqs. (4) and (6) can reduce to

Z (−1)
mn =

ζc
4π

∫ 3l

0

∫ 3l

0

∂ fm(z)
∂z

∂ fn(z′)
∂z′

1
R

dz′dz, (28)

Z (i)
mn =

(−1)i−1ζ

(i − 1)!4πci

∫ 3l

0

∫ 3l

0
fm(z) fn(z′) Ri−2dz′dz

+
(−1)i+1ζ

(i + 1)!4πci

∫ 3l

0

∫ 3l

0

∂ fm(z)
∂z

∂ fn(z′)
∂z′

Ridz′dz,

i ≥ 1, (29)

Fig. 4 Basis functions used in the IEM.

respectively, where R is the same as that in Eq. (11). By
substituting Eqs. (26) and (27) into Eqs. (28) and (29) and
ignoring the terms of i ≥ 3, we get the following expressions
for the self- and the mutual impedances:

Z11 = Z22 ' s−1Z (−1)
11 + sZ (1)

11 + s2Z (2)
11 , (30)

Z12 = Z21 ' s−1Z (−1)
12 + sZ (1)

12 + s2Z (2)
12 , (31)

where the expressions for Z (−1)
11 and Z (−1)

12 are the same as
those in Eqs. (22) and (23) derived by the PEECmethod; and
the other components are as follows:

Z (1)
11 =

ζ l
4πc

(
8l2 − 6a2

3l2 arsinh
2l
a

−
4l2 − 12a2

3l2 arsinh
l
a

−
28l2 − 5a2

9l3

√
4l2 + a2

+
28l2 − 20a2

9l3

√
l2 + a2 +

5a3

3l3

)
, (32)

Z (1)
12 =

ζ l
4πc

(
9l2 − 3a2

2l2 arsinh
3l
a

−
16l2 − 12a2

3l2 arsinh
2l
a

+
7l2 − 21a2

6l2 arsinh
l
a

−
63l2 − 5a2

18l3

√
9l2 + a2

+
56l2 − 10a2

9l3

√
4l2 + a2

−
49l2 − 35a2

18l3

√
l2 + a2 −

10a3

9l3

)
, (33)

Z (2)
11 = Z (2)

12 = −
ζ l2

6πc2 . (34)

It is notable that the PEEC method and the IEM yield the
same expressions for Z (−1)

11 and Z (−1)
12 because the charge

distributions are assumed to be uniform across the intervals
[0, l], [l, 2l], and [2l, 3l] in both the methods, i.e. the charge
distributions are expanded by the capacitive basis functions
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Fig. 5 Equivalent circuit by the IEM.

expressed by Eq. (9) in the PEEC method whereas they are
expanded by the derivative of the piecewise linear basis func-
tions expressed by Eq. (27) in the IEM. By using this fact and
introducing self- and mutual inductances

L11 = L22 = Z (1)
11 = Z (1)

22 , (35)

L12 = L21 = Z (1)
12 = Z (1)

21 , (36)

and dependent voltage sources

∆V1 = s2Z (2)
11 I1 + s2Z (2)

12 I2, (37)

∆V2 = s2Z (2)
21 I1 + s2Z (2)

22 I2, (38)

the self- and the mutual impedances expressed by Eqs. (30)
and (31) can also be represented by the equivalent circuit
shown in Fig. 5. From this viewpoint, the IEM can be re-
garded as an extension of the PEECmethod, and its improved
points are that:

1. the basis functions and their derivatives satisfy the
charge conservation law;

2. the radiation loss is represented by the dependent volt-
age sources.

3.3 Formulation by EMF Method

In the orthodox manner of the EMF method, a set of sinu-
soidal current distributions (m = 1, 2)

Ĩm(z) =



Im
sinh[s(l − |ml − z |)/c]

sinh(sl/c)
, |z − ml | < l

0, elsewhere

are assumed on the central axis of the wire, as shown in
Fig. 6.

The Ez component of the electric field generated by the
current Ĩ1(z) is expressed as follows:

Ez (z) =
ζ I1

4π sinh(sl/c)

[
e−sR0/c

R0

− 2 cosh
(

sl
c

)
e−sR1/c

R1
+

e−sR2/c

R2

]
,

where

Fig. 6 Current distributions used in the EMF method.

Rm =

√
a2 + (z − ml)2, m = 1, 2, 3.

The self- and the mutual impedances are expressed by the
following integrals:

Z11 = Z22 = −
1
|I1 |2

∫ 2l

0
Ez (z) Ĩ∗1 (z) dz, (39)

Z12 = Z21 = −
1

I1I∗2

∫ 3l

l

Ez (z) Ĩ∗2 (z) dz, (40)

where the superscript asterisk denotes the complex conju-
gate.

By expanding the integrands into the Laurent series,
ignoring the terms of i ≥ 3, and integrating the remaining
terms, we get the following expressions for the self- and the
mutual impedances:

Z11 = Z22 ' s−1Z (−1)
11 + sZ (1)

11 + s2Z (2)
11 , (41)

Z12 = Z21 ' s−1Z (−1)
12 + sZ (1)

12 + s2Z (2)
12 , (42)

where the expressions for Z (−1)
11 and Z (−1)

12 are the same as
those in Eqs. (22) and (23) derived by the PEEC method and
the IEM; the expressions for Z (2)

11 and Z (2)
12 are the same as

those in Eq. (34) derived by the IEM; and the other compo-
nents are as follows:

Z (1)
11 =

ζ l
4πc

(
−

4
3

arsinh
2l
a
+

8
3

arsinh
l
a

+
10l2 + a2

9l3

√
4l2 + a2

−
28l2 + 4a2

9l3

√
l2 + a2 +

6l2 + a2

3l3 a
)
, (43)

Z (1)
12 =

ζ l
4πc

(
−

7
2

arsinh
3l
a
+

20
3

arsinh
2l
a

−
17
6

arsinh
l
a
+

30l2 + a2

18l3

√
9l2 + a2

−
38l2 + 2a2

9l3

√
4l2 + a2

+
58l2 + 7a2

18l3

√
l2 + a2 −

6l2 + 2a2

9l3 a
)
. (44)
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In other words, the only difference between the IEM and the
EMF method is in the impedance components proportional
to s. By introducing the inductances and the dependent
voltage sources similar to those expressed by Eqs. (35)–(38),
the self- and the mutual impedances expressed by Eqs. (41)
and (42) can also be represented by the equivalent circuit
shown in Fig. 5.

4. Numerical Examples

This section discusses numerical examples with the values
of a = 1.5mm and l = 75mm. The capacitances obtained
by all the methods are the same because the expressions for
the self- and the mutual impedances proportional to s−1 are
also the same. Their numerical values are as follows:

C1 = C3 = 933.0174 fF, C2 = 799.3008 fF,
C12 = C23 = 216.6863 fF, C13 = 45.40740 fF.

On the other hand, the expressions for the inductances
by the respective methods are different each other. Table 1
compares the numerical values of the self- and the mutual in-

Table 1 Self- and mutual inductances (Unit: [nH]).

Parameter PEEC IEM EMF

L11 = L22 54.37605 36.60338 32.75083
L12 = L21 10.24833 15.02211 15.56670

Fig. 8 Self- and mutual admittances: (a) G11, (b) B11, (c) G21, (d) B21.

Fig. 7 Self- and mutual inductances: (a) L11, (b) L12.



HAGA and TAKAHASHI: CIRCUIT MODELING TECHNIQUE FOR ELECTRICALLY-VERY-SMALL DEVICES BASED ON LAURENT SERIES EXPANSION
561

ductances obtained by the three methods. In addition, Fig. 7
plots (a) the self- and (b) the mutual inductances as func-
tions of l. Whereas those obtained by the IEM and the EMF
method are comparable, those obtained by the PEECmethod
are considerably different. This is most likely because the
shapes of the basis functions for the PEECmethod are signif-
icantly different from those for the other methods, as shown
in Figs. 3, 4, and 6. In particular, each basis function for the
PEEC method concentrates on the length l whereas those
for the other methods are distributed to the length 2l. This
is likely the reason why the self-inductance by the PEEC
method are larger than the others. Besides, the basis func-
tions for the PEEC method do not overlap each other in
contrast to those for the other methods. In consequence, the
trends of the mutual inductance by the PEEC method are
different from the others.

Besides, the impedance components proportional to s2,
which are not defined in the PEEC method, are obtained
by the IEM and the EMF method as Z (2)

11 = Z (2)
12 = Z (2)

21 =

Z (2)
22 = −1.2508654 × 10−18 Ω · s2.

Subsequently, the frequency characteristics of the
equivalent circuits are discussed. As described previously,
all methods yield the same impedance components propor-
tional to s−1. Because they are dominant at low frequencies,
it is difficult to discuss the difference in the self- and the
mutual impedances. Instead, the self- and the mutual admit-
tances defined by

[
Y11 Y12
Y21 Y22

]
=

[
Z11 Z12
Z21 Z22

]−1
(45)

are discussed.
Figure 8 plots (a) the real and (b) the imaginary parts of

Y11 and (c) the real and (d) the imaginary parts of Y21. The
lines denoted by “EMF (approx.)” indicate the approximate
solution by using Eqs. (41) and (42). On the other hand, the
lines denoted by “EMF (full-wave)” indicate the reference
solution by Eqs. (41) and (42), in which integrals were nu-
merically calculated by using the tanh-sinh quadrature [15].
The results by the IEM and the approximated EMF method
reasonably agree with those by the full-wave EMF method,
whereas the results by the PEEC method are considerably
different from the other results. This is mainly because the
impedance components proportional to s2, which represent
the radiation loss, are not modeled in the PEEC method.
The slight difference between the results by the IEM and the
approximated EMF method is only due to the slight differ-
ence in the self- and the mutual inductances. Adittionally,
the slight difference between the results by the approximated
and the full-wave EMF methods is because the impedance
components being proportional to s3 and higher-order terms
are ignored in the approximate solution.

5. Conclusion

In this paper, the basic theory and numerical examples of
the impedance expansion method (IEM), which is a circuit

modeling technique for electrically-very-small devices based
on the MoM, are described.

Section 2 derived the Laurent series expansion of
the self-/mutual impedances between arbitrary frequency-
independent basis functions. It was also shown that the
impedance components, which are proportional to the pow-
ers of the complex angular frequency, namely, s−1, s, and s2,
correspond to the impedance of a capacitor, that of an induc-
tor, and the radiation resistance of an infinitesimal dipole,
respectively.

Section 3 showed that the equivalent circuit obtained
by IEM can be regarded an extension of that obtained by the
PEEC method. Section 4 showed that IEM is superior to
the conventional PEEC method in terms of accuracy and is
comparable to the EMF method.

Incidentally, this paper has not described how to realize
the dependent voltage sources, which are proportional to
s2, in versatile circuit simulators. This can, however, be
achieved by approximating the equivalent circuit using only
passive elements. The details will be discussed in further
studies. In addition, practical problems including the IBC
and the WPT systems will be investigated as well.
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Appendix A: Proof of Eq. (5)

By expanding the exponential function in Eq. (1) into the
Taylor series and taking the coefficient for s0, we get the
following expression for Z (0)

mn:

Z (0)
mn =

ζ

4π

∫
S

∫
S

[∇ · Fm(r )][∇′ · Fn(r ′)] dS′dS

=
ζ

4π

[∫
S

∇ · Fm(r ) dS
] [∫

S

∇′ · Fn(r ′) dS′
]
.

According to the surface divergence theorem, the integrals
in the right-hand side are zero because Fm(r ) and Fn(r ′)
are tangential to the closed surface S. Therefore, we have
equality of Eq. (5). �

Appendix B: Proof of Eq. (7)

By substituting i = 2 into Eq. (6), we get the following
expression for Z (2)

mn:

Z (2)
mn = −

ζ

4πc2

∫
S

∫
S

Fm(r ) · Fn(r ′) dS′dS

−
ζ

24πc2

∫
S

∫
S

[∇ · Fm(r )][∇′ · Fn(r ′)]R2dS′dS.

(A· 1)

First, the following equality is proven:∫
S

∫
S

[∇ · Fm(r )][∇′ · Fn(r ′)]R2dS′dS

= −2
∫
S

∫
S

Fm(r ) · Fn(r ′) dS′dS. (A· 2)

According to the following relations

∇′ · [Fn(r ′)R2] = [∇′ · Fn(r ′)]R2 + Fn(r ′) · (∇′R2),

∇′R2 = −2(r − r ′),

we have equality of

[∇′ · Fn(r ′)]R2 = ∇′ · [Fn(r ′)R2] + 2Fn(r ′) · (r − r ′).

By substituting this into the left-hand side of Eq. (A· 2) and
using the surface divergence theorem, we get

LHS = 2
∫
S

Fn(r ′) ·
{∫

S

[∇ · Fm(r )] r dS
}

dS′.

(A· 3)

Now, the integral in the curly brackets can be decomposed

into the Cartesian components as follows:∫
S

[∇ · Fm(r )] r dS = x̂
∫
S

[∇ · Fm(r )] x dS

+ ŷ

∫
S

[∇ · Fm(r )] y dS + ẑ
∫
S

[∇ · Fm(r )] z dS.

(A· 4)

Because

∇ · [Fm(r ) x] = [∇ · Fm(r )] x + Fm(r ) · (∇x)
= [∇ · Fm(r )] x + Fm(r ) · x̂,

we have equality of

[∇ · Fm(r )] x = ∇ · [Fm(r ) x] − Fm(r ) · x̂. (A· 5)

Similarly,

[∇ · Fm(r )] y = ∇ · [Fm(r ) y] − Fm(r ) · ŷ, (A· 6)
[∇ · Fm(r )] z = ∇ · [Fm(r ) z] − Fm(r ) · ẑ. (A· 7)

By substituting Eqs. (A· 5)–(A· 7) into Eq. (A· 4) and using
the surface divergence theorem, we get∫

S

[∇ · Fm(r )] r dS = −
∫
S

Fm(r ) dS. (A· 8)

By substituting Eq. (A· 8) into Eq. (A· 3), the equality of
Eq. (A· 2) is proven:

LHS = −2
∫
S

∫
S

Fn(r ′) · Fm(r ) dS′dS = RHS.

Finally, by substituting Eq. (A· 2) into Eq. (A· 1), Eq. (7) is
derived as follows:

Z (2)
mn = −

ζ

6πc2

∫
S

∫
S

Fm(r ) · Fn(r ′) dS′dS

= −
ζ

6πc2

[∫
S

Fm(r ) dS
]
·

[∫
S

Fn(r ′) dS′
]
.
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